A. | 30° | B. | 45° | C. | 60° | D. | 70° |
分析 连接AD,构建直角三角形ACD.根据直径所对的圆周角是90°知三角形ACD是直角三角形,然后在Rt△ACD中求得∠BAD=60°;然后由圆周角定理(同弧所对的圆周角相等)求∠2的度数即可.
解答 解:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ACD中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°,故选C.
点评 本题考查了圆周角定理.解答此题的关键是借助辅助线AD,将隐含是题干中的已知条件△ACD是直角三角形展现出来,然后根据直角三角形的两个锐角互余求得∠DAB=60°.